巴中市2015年初中畢業(yè)生學(xué)業(yè)水平考試和高中階段招生考試各學(xué)科考試說(shuō)明
2015年考試科目:
語(yǔ) 文:試題滿分150分,答題時(shí)間120分鐘
數(shù) 學(xué):試題滿分150分,答題時(shí)間120分鐘
外 語(yǔ):試題滿分150分(聽(tīng)力30分),答題時(shí)間120分鐘
文科綜合(思想品德、歷史):試題滿分150分,答題時(shí)間120分鐘
理科綜合(物理、化學(xué)):試題滿分150分,答題時(shí)間120分鐘
注:各學(xué)科無(wú)多項(xiàng)選擇題;易、中難度、較難題比例約7:2:1
數(shù) 學(xué)
一、考試方式
①采取閉卷筆試的方式。全卷滿分為150分,答題時(shí)間為120分鐘。
②參加考試的學(xué)生帶三角板、圓規(guī)、量角器等進(jìn)入考場(chǎng)。
二、試卷結(jié)構(gòu)
1.基本結(jié)構(gòu)
試題題型包括客觀性試題和主觀性試題兩大類。
客觀性試題指選擇題和填空題。選擇題是四選一的單項(xiàng)選擇題;填空題直接填寫(xiě)結(jié)果。
主觀性試題指計(jì)算題、證明題、閱讀題、畫(huà)圖題以及探索題、開(kāi)放題等(常統(tǒng)稱為解答題)。解答題要有解題的主要過(guò)程,關(guān)鍵步驟不能省略。
2.題型比例
全卷不超過(guò)35個(gè)小題,每個(gè)小題的設(shè)問(wèn)最多3問(wèn),試卷采用選擇題、填空題和解答題(包括開(kāi)放性解答題)組成,其中客觀性試題(選擇題、填空題)的分值不超過(guò)試卷總分值的40%,開(kāi)放性解答題的分值可占總分值的5%-10%。
3.知識(shí)內(nèi)容比例
數(shù)與代數(shù)約75分,空間與圖形約58分,統(tǒng)計(jì)與概率約17分。
4.試題難度比例
容易題70%;中等題20%;較難題10%。
三、考試內(nèi)容及要求
(一)考試內(nèi)容
數(shù)學(xué)學(xué)業(yè)水平暨高中階段招生考試以義務(wù)教育《數(shù)學(xué)課程標(biāo)準(zhǔn)》所規(guī)定的四大學(xué)習(xí)領(lǐng)域,即數(shù)與代數(shù)、圖形與幾何、統(tǒng)計(jì)與概率、綜合與實(shí)踐的內(nèi)容為依據(jù),主要考查基礎(chǔ)知識(shí)、基本技能、基本思想和基本活動(dòng)經(jīng)驗(yàn)。
1.關(guān)注基礎(chǔ)知識(shí)與基本技能
了解數(shù)的意義,理解數(shù)和代數(shù)運(yùn)算的算理和算法,能夠合理地進(jìn)行基本運(yùn)算;能夠在實(shí)際情境中有效地使用代數(shù)運(yùn)算、代數(shù)模型及相關(guān)概念解決問(wèn)題。
能夠借助不同的方法探索幾何對(duì)象的有關(guān)性質(zhì);能夠使用不同的方式表達(dá)幾何對(duì)象的大小、位置與特征;能夠在頭腦里構(gòu)建幾何對(duì)象,進(jìn)行幾何圖形的分解與組合,能夠?qū)δ承﹫D形進(jìn)行簡(jiǎn)單的變換;能夠借助數(shù)學(xué)證明的方法確認(rèn)數(shù)學(xué)命題的正確性。
正確理解數(shù)據(jù)的含義,能夠結(jié)合實(shí)際需要有效地表達(dá)數(shù)據(jù)特征,會(huì)根據(jù)數(shù)據(jù)結(jié)果做合理的預(yù)測(cè);了解概率的含義,能夠借助概率模型或通過(guò)設(shè)計(jì)活動(dòng)解釋事件發(fā)生的概率。
2.關(guān)注“數(shù)學(xué)活動(dòng)過(guò)程”
數(shù)學(xué)活動(dòng)過(guò)程包括數(shù)學(xué)活動(dòng)過(guò)程中所表現(xiàn)出來(lái)的思維方式、思維水平,對(duì)活動(dòng)對(duì)象、相關(guān)知識(shí)與方法的理解深度;從事探究的意識(shí)、能力和信心等。也包括能否通過(guò)觀察、實(shí)驗(yàn)、歸納、類比等活動(dòng)獲得數(shù)學(xué)猜想,并尋求證明猜想的合理性;能否使用恰當(dāng)?shù)恼Z(yǔ)言有條理地表達(dá)數(shù)學(xué)的思考過(guò)程。
3.關(guān)注“數(shù)學(xué)思考”
學(xué)生在數(shù)感與符號(hào)感、空間觀念、統(tǒng)計(jì)意識(shí)、推理能力、應(yīng)用數(shù)學(xué)的意識(shí)等方面的發(fā)展情況,其內(nèi)容主要包括:
能用數(shù)來(lái)表達(dá)和交流信息;能夠使用符號(hào)表達(dá)數(shù)量關(guān)系,并借助符號(hào)轉(zhuǎn)換獲得對(duì)事物的理解;能夠觀察到現(xiàn)實(shí)生活中的基本幾何現(xiàn)象;能夠運(yùn)用圖形形象地表達(dá)問(wèn)題、借助直觀進(jìn)行思考與推理;能合理借助統(tǒng)計(jì)活動(dòng)去收集信息;面對(duì)數(shù)據(jù)時(shí)能對(duì)它的來(lái)源、處理方法和由此而得到的推測(cè)性結(jié)論做合理的質(zhì)疑;能正確地認(rèn)識(shí)生活中的一些確定或不確定現(xiàn)象;能從事基本的觀察、分析、實(shí)驗(yàn)、猜想和推理的活動(dòng),并能夠有條理地、清晰地闡述自已的觀點(diǎn)。
4.關(guān)注“解決問(wèn)題能力”
能從數(shù)學(xué)角度提出問(wèn)題、理解問(wèn)題、并綜合運(yùn)用數(shù)學(xué)知識(shí)解決問(wèn)題;具有一定的解決問(wèn)題的基本策略;具有初步的反思意識(shí)。
5.關(guān)注“對(duì)數(shù)學(xué)的基本認(rèn)識(shí)”
形成對(duì)數(shù)學(xué)內(nèi)容系統(tǒng)性的認(rèn)識(shí)(不同數(shù)學(xué)知識(shí)之間的聯(lián)系、不同數(shù)學(xué)方法之間的相似性等);深化對(duì)數(shù)學(xué)與現(xiàn)實(shí)或其他學(xué)科知識(shí)之間聯(lián)系的認(rèn)識(shí)等等。
(二)考試要求
1.《數(shù)學(xué)課程標(biāo)準(zhǔn)》規(guī)定了初中數(shù)學(xué)的教學(xué)要求
(1)使學(xué)生獲得適用未來(lái)社會(huì)生活和進(jìn)一步發(fā)展所必需的重要數(shù)學(xué)知識(shí),以及基本的數(shù)學(xué)思想方法和必要的應(yīng)用技能。
(2)初步學(xué)會(huì)運(yùn)用數(shù)學(xué)的思維方式觀察、分析現(xiàn)實(shí)社會(huì),解決日常生活和其他學(xué)科學(xué)習(xí)中的問(wèn)題,增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí)。
(3)體會(huì)數(shù)學(xué)與自然及人類社會(huì)的密切聯(lián)系,了解數(shù)學(xué)的價(jià)值,增進(jìn)對(duì)數(shù)學(xué)的理解和學(xué)好數(shù)學(xué)的信心。
(4)具有初步的創(chuàng)新精神和實(shí)踐能力,在情感態(tài)度和一般能力方面都能得到充分發(fā)展。
2.《數(shù)學(xué)課程標(biāo)準(zhǔn)》闡述的教學(xué)要求具體分以下幾個(gè)層次
知識(shí)技能要求:
(1)了解:能從具體事例中,知道或能舉例說(shuō)明對(duì)象的有關(guān)特征(或意義);能根據(jù)對(duì)象的特征,從具體情境中辨認(rèn)出這一對(duì)象。
(2)理解:能描述對(duì)象特征和由來(lái);能明確地闡述此對(duì)象與有關(guān)對(duì)象之間的區(qū)別和聯(lián)系。
(3)掌握:能在理解的基礎(chǔ)上,把對(duì)象運(yùn)用到新的情境中去。
(4)運(yùn)用:能綜合運(yùn)用知識(shí),靈活、合理地選擇與運(yùn)用有關(guān)的方法完成特定的數(shù)學(xué)任務(wù)。
過(guò)程性要求:
(5)經(jīng)歷(感受):在特定的數(shù)學(xué)活動(dòng)中,獲得一些初步的感受。
(6)體驗(yàn)(體會(huì)):參與特定的數(shù)學(xué)活動(dòng),在具體情境中認(rèn)識(shí)對(duì)象的特征,獲得一些經(jīng)驗(yàn)。
(7)探索:主動(dòng)參與特定的數(shù)學(xué)活動(dòng),通過(guò)觀察、實(shí)驗(yàn)、推理等活動(dòng)發(fā)現(xiàn)對(duì)象的某些特征或與其他對(duì)象的區(qū)別和聯(lián)系。
這些要求從不同角度表明了數(shù)學(xué)學(xué)業(yè)考試要求的層次性。
四、具體內(nèi)容與要求:
(一)數(shù)與代數(shù)
1.數(shù)與式
(1)有理數(shù)
①理解有理數(shù)的意義,能用數(shù)軸上的點(diǎn)表示有理數(shù),會(huì)比較有理數(shù)的大小。
②借助數(shù)軸理解相反數(shù)和絕對(duì)值的意義,掌握求有理數(shù)的相反數(shù)與絕對(duì)值的方法,知道|a|的含義。
③理解乘方的意義,掌握有理數(shù)的加、減、乘、除、乘方及簡(jiǎn)單的混合運(yùn)算(以三步為主)。
④理解有理數(shù)的運(yùn)算律,并能運(yùn)用運(yùn)算律簡(jiǎn)化運(yùn)算。
⑤能運(yùn)用有理數(shù)的運(yùn)算解決簡(jiǎn)單的問(wèn)題。
(2)實(shí)數(shù)
①了解平方根、算術(shù)平方根、立方根的概念,會(huì)用根號(hào)表示數(shù)的平方根、算術(shù)平方根、立方根。
②了解開(kāi)方與乘方互為逆運(yùn)算,會(huì)用平方運(yùn)算求百以內(nèi)整數(shù)的平方根,會(huì)用立方運(yùn)算求百以內(nèi)整數(shù)(對(duì)應(yīng)的負(fù)整數(shù))的立方根。
③了解無(wú)理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)與數(shù)軸上的點(diǎn)一一對(duì)應(yīng),能求實(shí)數(shù)的相反數(shù)與絕對(duì)值。
④能用有理數(shù)估計(jì)一個(gè)無(wú)理數(shù)的大致范圍。
⑤了解近似數(shù),在解決實(shí)際問(wèn)題中,能按問(wèn)題的要求對(duì)結(jié)果取近似值。
⑥了解二次根式、最簡(jiǎn)二次根式的概念及其加、減、乘、除運(yùn)算法則,會(huì)用它們進(jìn)行有關(guān)實(shí)數(shù)的簡(jiǎn)單四則運(yùn)算(不要求分母有理化)。
(3)代數(shù)式
①理解用字母表示數(shù)的意義。
②能分析簡(jiǎn)單問(wèn)題的數(shù)量關(guān)系,并用代數(shù)式表示。
③會(huì)求代數(shù)式的值;能根據(jù)特定的問(wèn)題查閱資料,找到所需要的公式,并會(huì)代入具體的值進(jìn)行計(jì)算。
(4)整式與分式
①了解整數(shù)指數(shù)冪的意義和基本性質(zhì),會(huì)用科學(xué)記數(shù)法表示數(shù)。
②理解整式的概念,掌握合并同類項(xiàng)和去括號(hào)法則,會(huì)進(jìn)行簡(jiǎn)單的整式加、減運(yùn)算;會(huì)進(jìn)行簡(jiǎn)單的整式乘法運(yùn)算。
③會(huì)推導(dǎo)乘法公式,了解公式的幾何背景,并能進(jìn)行簡(jiǎn)單計(jì)算。
④會(huì)用提公因式法、公式法(直接用公式不超過(guò)二次)進(jìn)行因式分解(指數(shù)是正整數(shù))。
⑤了解分式和最簡(jiǎn)分式的概念,會(huì)利用分式的基本性質(zhì)進(jìn)行約分和通分,會(huì)進(jìn)行簡(jiǎn)單的分式加、減、乘、除運(yùn)算。
2.方程與不等式
(1)方程與方程組
①能夠根據(jù)具體問(wèn)題中的數(shù)量關(guān)系,列出方程。體會(huì)方程是刻畫(huà)現(xiàn)實(shí)世界數(shù)量關(guān)系的一個(gè)有效的數(shù)學(xué)模型。
②能用觀察、畫(huà)圖等手段估計(jì)方程的解。
③掌握等式的基本性質(zhì)。
④掌握消元方法,會(huì)解一元一次方程、簡(jiǎn)單的二元一次方程組、可化為一元一次方程的分式方程(方程中的分式不超過(guò)兩個(gè))。
⑤ 理解配方法,會(huì)用因式分解法、公式法、配方法解簡(jiǎn)單的數(shù)字系數(shù)的一元二次方程。
⑥能根據(jù)具體問(wèn)題的實(shí)際意義,檢驗(yàn)結(jié)果是否合理。
⑦會(huì)用一元二次方程根的判別式判別方程根的情況。
(2)不等式與不等式組。
①能夠根據(jù)具體問(wèn)題中的大小關(guān)系了解不等式的意義,并探索不等式的基本性質(zhì)。
②會(huì)解簡(jiǎn)單的一元一次不等式,并能在數(shù)軸上表示出解集。會(huì)解由兩個(gè)一元一次不等式組成的不等式組,并會(huì)用數(shù)軸確定解集。
③能夠根據(jù)具體問(wèn)題中的數(shù)量關(guān)系,列出一元一次不等式和一元一次不等式組,解決簡(jiǎn)單的問(wèn)題。
3.函數(shù)
(1)函數(shù)
①能探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,了解常量、變量的意義。
②了解函數(shù)的概念和三種表示方法,能舉出函數(shù)的實(shí)例。
③能結(jié)合圖象對(duì)簡(jiǎn)單實(shí)際問(wèn)題中的函數(shù)關(guān)系進(jìn)行分析。
④能確定簡(jiǎn)單的整式、分式和簡(jiǎn)單實(shí)際問(wèn)題中的函數(shù)的自變量取值范圍,并會(huì)求出函數(shù)值。
⑤能用適當(dāng)?shù)暮瘮?shù)表示法刻畫(huà)出某些實(shí)際問(wèn)題中變量之間的關(guān)系。
⑥結(jié)合對(duì)函數(shù)關(guān)系的分析,會(huì)嘗試對(duì)變量的變化規(guī)律進(jìn)行初步探討。
(2)一次函數(shù)
①理解一次函數(shù)的意義,根據(jù)已知條件、待定系數(shù)法確定一次函數(shù)表達(dá)式。
②會(huì)畫(huà)一次函數(shù)的圖象,根據(jù)一次函數(shù)的圖象和解析表達(dá)式y(tǒng)=kx+b(k≠0)探索并理解其性質(zhì)(k>0或k<0時(shí),圖象的變化情況)。
③理解正比例函數(shù)。
④體會(huì)一次函數(shù)與二元一次方程的關(guān)系。
⑤能根據(jù)一次函數(shù)解決實(shí)際問(wèn)題。
(3)反比例函數(shù)
①結(jié)合具體情境體會(huì)反比例函數(shù)的意義,能根據(jù)已知條件確定反比例函數(shù)表達(dá)式。
②能畫(huà)出反比例函數(shù)的圖象,根據(jù)圖象和解析表達(dá)式y(tǒng)=k/x(k≠0)探索并理解其性質(zhì)(k>0或k<0時(shí),圖象的變化)。
③能用反比例函數(shù)解決某些實(shí)際問(wèn)題。
(4)二次函數(shù)
①通過(guò)對(duì)實(shí)際問(wèn)題情境的分析確定二次函數(shù)的表達(dá)式,了解二次函數(shù)的意義。
②會(huì)用描點(diǎn)法畫(huà)出二次函數(shù)的圖象,認(rèn)識(shí)二次函數(shù)的性質(zhì)。
③會(huì)根據(jù)公式確定圖象的頂點(diǎn)、開(kāi)口方向和對(duì)稱軸(公式不要求記憶和推導(dǎo)),并能解決簡(jiǎn)單的實(shí)際問(wèn)題。
④會(huì)利用二次函數(shù)的圖象求一元二次方程的近似解。
(責(zé)任編輯:)