集合思想及應(yīng)用
集合是高中數(shù)學(xué)的基本知識(shí),為歷年必考內(nèi)容之一,主要考查對(duì)集合基本概念的認(rèn)識(shí)和理解,以及作為工具,考查集合語(yǔ)言和集合思想的運(yùn)用.本節(jié)主要是幫助考生運(yùn)用集合的觀點(diǎn),不斷加深對(duì)集合概念、集合語(yǔ)言、集合思想的理解與應(yīng)用.
●難點(diǎn)磁場(chǎng)
(★★★★★)已知集合A={(x,y)|x2+mx-y+2=0},B={(x,y)|x-y+1=0,且0≤x≤2},如果A∩B≠ ,求實(shí)數(shù)m的取值范圍.
難點(diǎn)2 充要條件的判定
充分條件、必要條件和充要條件是重要的數(shù)學(xué)概念,主要用來區(qū)分命題的條件p和結(jié)論q之間的關(guān)系.本節(jié)主要是通過不同的知識(shí)點(diǎn)來剖析充分必要條件的意義,讓考生能準(zhǔn)確判定給定的兩個(gè)命題的充要關(guān)系.
●難點(diǎn)磁場(chǎng)
(★★★★★)已知關(guān)于x的實(shí)系數(shù)二次方程x2+ax+b=0有兩個(gè)實(shí)數(shù)根α、β,證明:|α|<2且|β|<2是2|a|<4+b且|b|<4的充要條件
難點(diǎn)3 運(yùn)用向量法解題
平面向量是新教材改革增加的內(nèi)容之一,近幾年的全國(guó)使用新教材的高考試題逐漸加大了對(duì)這部分內(nèi)容的考查力度,本節(jié)內(nèi)容主要是幫助考生運(yùn)用向量法來分析,解決一些相關(guān)問題.
●難點(diǎn)磁場(chǎng)
(★★★★★)三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求:(1)BC邊上的中線
AM的長(zhǎng);(2)∠CAB的平分線AD的長(zhǎng);(3)cosABC的值.
難點(diǎn)4 三個(gè)“二次”及關(guān)系
三個(gè)“二次”即一元二次函數(shù)、一元二次方程、一元二次不等式是中學(xué)數(shù)學(xué)的重要內(nèi)容,具有豐富的內(nèi)涵和密切的聯(lián)系,同時(shí)也是研究包含二次曲線在內(nèi)的許多內(nèi)容的工具.高考試題中近一半的試題與這三個(gè)“二次”問題有關(guān).本節(jié)主要是幫助考生理解三者之間的區(qū)別及聯(lián)系,掌握函數(shù)、方程及不等式的思想和方法.
●難點(diǎn)磁場(chǎng)
已知對(duì)于x的所有實(shí)數(shù)值,二次函數(shù)f(x)=x2-4ax+2a+12(a∈R)的值都是非負(fù)的,求關(guān)于x的方程 =|a-1|+2的根的取值范圍.轉(zhuǎn)自環(huán) 球 網(wǎng) 校edu24ol.com
難點(diǎn)5 求解函數(shù)解析式
求解函數(shù)解析式是高考重點(diǎn)考查內(nèi)容之一,需引起重視.本節(jié)主要幫助考生在深刻理解函數(shù)定義的基礎(chǔ)上,掌握求函數(shù)解析式的幾種方法,并形成能力,并培養(yǎng)考生的創(chuàng)新能力和解決實(shí)際問題的能力.
●難點(diǎn)磁場(chǎng)
(★★★★)已知f(2-cosx)=cos2x+cosx,求f(x-1).
●案例探究
[例1](1)已知函數(shù)f(x)滿足f(logax)= (其中a>0,a≠1,x>0),求f(x)的表達(dá)式.
(2)已知二次函數(shù)f(x)=ax2+bx+c滿足|f(1)|=|f(-1)|=|f(0)|=1,求f(x)的表達(dá)式.
編輯推薦:2014年成人高考高起點(diǎn)數(shù)學(xué)復(fù)習(xí)資料匯總
相關(guān)鏈接:成人高考考試教材 免費(fèi)在線???/span> 歷年考試真題 最新考試動(dòng)態(tài)
(責(zé)任編輯:fky)